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Abstract
In distinction to the Neumann case, the squeezing limit of a Dirichlet network
leads in the threshold region generically to a quantum graph with disconnected
edges, exceptions may come from threshold resonances. Our main point in
this paper is to show that modifying locally the geometry we can achieve in the
limit a nontrivial coupling between the edges including, in particular, the class
of δ-type boundary conditions. We work out an illustration of this claim in the
simplest case when a bent waveguide is squeezed.

PACS numbers: 03.65.Db, 73.21.Hb
Mathematics Subject Classification: 81V99, 35J10, 34L40

1. Introduction

Quantum mechanics on graphs attracted a lot of attention recently—let us just mention the
proceeding volume [BCFK06] as a guide to the abundant bibliography in the field. The
interest has different sources, important among them are numerous existing and potential
applications. While simple and versatile, however, quantum graph models have a problem:
in a sense they offer too much freedom. The requirement of self-adjointness, or probability
current conservation, determines a class of boundary conditions which connect the column
vectors � and � ′ of boundary values of the wavefunctions and their derivatives at a given
graph vertex. Following [Ha00, KS00] these conditions can be cast into the unique form

(U − I )� + i(U + I )� ′ = 0, (1.1)

where U is an n × n unitary matrix, with n being the number of edges sprouting of the vertex.
Hence, a vertex coupling contains n2 free parameters to be fixed. Asking about the

meaning of various couplings one can naturally get useful insights by obtaining boundary
conditions through limit of families of (regular or singular) interactions on the graph
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[E96, CE04, ET07]. A proper understanding of the problem requires, however, to find
an interpretation of the coupling in terms of models without free parameters; a natural idea
is to investigate the motion of a free quantum particle on a system of thin tubes which shrink
towards the graph.

This is a longstanding and nontrivial problem and the answer depends substantially on the
network dynamics we work with. In the case when the Hamiltonian (which can be identified
with the Laplacian by a suitable choice of units) refers to tubes with Neumann boundary, the
limit yields typically quantum graphs with free boundary conditions (often called not quite
appropriately Kirchhoff) at the vertices, described by U = 2

n
J − I , where J is the n × n

matrix whose all entries are equal to one—see [FW93, KZ01, RS01, Sa01], the same is true
also for shrinking families of ‘sleeve’ manifolds without a boundary [EP05]; the convergence
is norm-resolvent [Po05a] and the conclusion extends to resonances on such structures [EP07].

From the viewpoint of applications to semiconductor structures and similar objects,
however, it is the case of Dirichlet (hard-wall) boundary which is more important. It is
very different from its Neumann counterpart and more difficult and relevant results started
appearing only recently. The main source of the difficulties is that in the Dirichlet case
geometric perturbations such as bending, ‘swelling’, twisting or branching give rise to an
effective interaction—see, e.g., [EŠ89, DE95, EEK05] and references therein—sometimes
attractive, sometimes repulsive, which changes spectral and scattering properties of such
networks. Even the statement of the problem is more complicated than in the Neumann
case where we naturally investigate spectrum around the zero value which is the continuum
threshold. The analogous quantity in a Dirichlet network blows up to infinity and one has
to choose the reference point by a suitable energy renormalization. In most cases, with the
notable exception of the recent paper [MV06], the attention is paid to the vicinity of the
‘running’ threshold.

It is generally conjectured that the generic limit in the vicinity of the threshold corresponds
to a fully decoupled graph with Dirichlet conditions at the edge endpoints. This is obvious
if the vertex regions squeeze faster than tubes as in [Po05b] but it is expected to hold even
without such an additional effective repulsion. To see the reason one has to realize that the
problem at hand can be by scaling rephrased as analysis of a network of tubes of constant
cross section whose overall size grow. This means that the distances between the ‘vertices’
tend to infinity and the character of solutions to the Schrödinger equation is determined by its
asymptotic properties around each single vertex. Away of the threshold, as in the particular
case of [MV06] cited above, the limiting boundary conditions are generally nontrivial and
given by the scattering properties of the ‘fat star’ region. Around the threshold, on the other
hand, the scattering is generically suppressed in view of the mentioned effective interaction—
see a brief discussion in [MV06], the forthcoming paper [Gr07] and also a related problem
with Dirichlet boundary replaced by a confining potential in [DT06]—leading to the Dirichlet
decoupling.

This limiting behaviour is not universal, though. The situation changes if the described
system associated with the vertex possesses a threshold resonance. The simplest case where
a nontrivial effect of this type can be observed is a bent tube which squeezes in the limit to a
graph of two half-line edges joined in a single vertex [ACF07]: in the presence of a threshold
resonance one gets the line with a point interaction of scale-invariant type, cf [HC06] and
references therein. More general results of that type were announced in [Gr07].

Our main point in this paper is to argue that one can go further and construct classes
of squeezing Dirichlet networks which produce wider families of vertex coupling when
renormalized to the continuum threshold, including those with nonempty discrete spectrum or
resonances. The procedure we propose consists of two steps:
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(i) choose a network collapsing to a graph in such a way that the limit Hamiltonian has a
threshold resonance4,

(ii) change the scaling properties of the vertex region slightly, typically by adding higher
order terms in the scaling parameter.

The modification in point (ii) can be achieved in various ways; for instance, one can
‘wiggle’ the edges angles or scale the vertex volume region at a rate which differs from that of
the ‘edge tubes’ by a higher order term, a combination of such perturbations, etc. Incidentally,
the same effect can also be obtained by introducing suitable potentials into the vertex region,
but a purely geometric way is probably the most interesting.

Note that the described approximation follows the same scheme which one uses when
interpreting pseudopotentials, or point interactions in dimensions two and three, by a suitable
nonlinear scaling starting from a threshold resonance [AGHH05]. On the other hand, there is a
large difference between the two cases coming from the fact that the geometric approximation
discussed here covers not a single operator class but a broad variety of systems. Consequently,
the proposal made above has a status of a conjecture and the corresponding procedure must
be made concrete and worked out properly in each particular case.

To show that this programme is not void we are going in the rest of the paper to perform
this task for the bent-waveguide system studied in [ACF07]. We will show that by modifying
the bending angle around a threshold resonance value we can arrive in the limit at a two-
parameter class of point interactions on the line including the important particular case of the
δ interaction. In our model, the system has multiple threshold resonances and the limiting
procedure described above can be associated with each of them—we expect that this is a
standard behaviour of networks with Dirichlet boundary. We will describe the model and state
the results in the next section. Then we extend the analysis of short-range potentials from
[ACF07] to more general scaling, and in the last section we will prove our main theorem.

2. The bent-waveguide model and the results

As we have said we use the model studied in [ACF07], namely a planar waveguide of constant
width obtained by ‘fattening’ a fixed smooth curve along its normal. We denote by C a curve
embedded in R

2, i.e. C := {(x, y) ∈ R
2|x = γ1(s), y = γ2(s), s ∈ R}, assuming that it

is parameterized by its arc length, γ ′2
1 + γ ′2

2 = 1. Moreover, we denote by γ (s) the signed
curvature of C,

γ (s) := γ ′
2(s)γ

′′
1 (s) − γ ′

1(s)γ
′′
2 (s);

it completely characterizes the curve C up to Euclidean transformations and the curvature radius
at a given point is given by r = |γ |−1. We suppose that the curve is not self-intersecting,
i.e., it has no loops, and for simplicity we consider only curves with a compactly supported
curvature. The last assumption means that the curve C is made up of two straight half lines
joined by a smooth curve. In particular, the (overall) bending angle of C is the angle between
the two half lines, which is equal to θ = ∫

R
γ (s) ds.

The above-mentioned fat curve which is our waveguide is the open set � ⊂ R
2 defined as

� := {(x, y) ∈ R
2|x = γ1(s) − uγ ′

2(s), y = γ2(s) + uγ ′
1(s), s ∈ R, u ∈ (−d, d)},

where s and u represent a global system of coordinates in strip, with s being the coordinate
along the curve while u is the distance along the normal to C. The width of the waveguide

4 The original network Hamiltonian at that may or may not have such a resonance, depending on the limiting
procedure used. A threshold resonance may be present, e.g., in the leading term of the perturbation expansion w.r.t.
the squeezing parameter as in the model discussed below.
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is constant and equal to 2d where d > 0. Another standard assumption we made is that
d is smaller than the curvature radius, d‖γ ‖∞ < 1. The closure of � is conventionally
denoted by �. The (negative) Laplacian with Dirichlet boundary conditions on ∂�, denoted
as −�D

� , is the Friedrichs extension of the positive, symmetric operator L0 := −� with
D(L0) := C∞

0 (�).
The main geometric object of our study will be a family of waveguides whose shape and

width depend on a scaling parameter 0 < ε � 1 according to

γε(s) :=
√

λ(ε)

ε
γ
( s

ε

)
; dε := εαd, with α > 1, (2.1)

where λ(ε) is a fixed function to be specified below; its presence is the main difference
comparing to [ACF07] because of the term

√
λ(ε). We suppose that λ(ε) is real, positive and

analytic near the origin and, moreover, that it expands as

λ(ε) = 1 + λ1ε + O(ε2) with λ1 = λ′(0). (2.2)

We assume that the condition dε‖γε‖∞ < 1 is satisfied for every 0 < ε � ε0 with some
ε0 > 0. The scaling (2.1) gives rise to a family of curves, Cε := {(x, y) ∈ R

2|x =
γε,1(s), y = γε,2(s), s ∈ R}, the bending angle θε of which changes slightly with respect to ε,

θε =
∫

R

γε(s) ds = θ
√

λ(ε) = θ

(
1 +

1

2
λ1ε

)
+ O(ε2).

They in turn generate a family of bent waveguides, i.e. domains �ε defined by

�ε := {(x, y) ∈ R
2|x = γε,1(s) − uγ ′

ε,2(s), y = γε,2(s) + uγ ′
ε,1(s), s ∈ R, u ∈ (−dε, dε)}.

In the limit ε → 0, the strip family shrinks to a graph, denoted by G, made up of two edges
and one vertex. Our aim is to investigate the limit of the respective operator family −�D

�ε

when ε → 0. We will show that it approximates in a suitable sense an operator on G, namely
the Schrödinger operator on the line with a point interaction depending on γ and λ(ε).

Before to state our main theorem, let us introduce some notation and mention some
preliminary facts. Writing for brevity �′ = R × (−d, d), we recall the following result
[DE95, EŠ89]:

Proposition 1. For any 0 < ε � ε0 let Cε be as described above, with γ piecewise C2 and
compactly supported, such that γ ′, γ ′′ are bounded. Then −�D

�ε
is unitarily equivalent to the

operator Hε defined as the closure of the e.s.a. operator H0ε acting on L2(�′) as

H0ε = − ∂

∂s

1

(1 + εα−1u
√

λ(ε)γ (s/ε))2

∂

∂s
− 1

ε2α

∂2

∂u2
+

1

ε2
Vε(s, u),

with the effective potential

Vε(s, u) = − λ(ε)γ (s/ε)2

4(1 + εα−1u
√

λ(ε)γ (s/ε))2
+

εα−1u
√

λ(ε)γ ′′(s/ε)
2(1 + εα−1u

√
λ(ε)γ (s/ε))3

− 5

4

ε2α−2u2λ(ε)γ ′(s/ε)2

(1 + εα−1u
√

λ(ε)γ (s/ε))4

and D(H0,ε) = {ψ ∈ L2(�′)|ψ ∈ C∞(�′), ψ(s, d) = ψ(s,−d) = 0,H0εψ ∈ L2(�′)}.
Let us next introduce the transversal modes, i.e., the normalized functions φn(u) which

solve the equation −ε−2αφ′′
n(u) = Eε,nφn(u) with the boundary conditions φn(ε

αd) =
φn(−εαd) = 0. In particular, the corresponding eigenvalues Eε,n are explicitly given by

Eε,n =
( nπ

2dεα

)2
with n = 1, 2, . . . .
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The resolvent of Hε admits an integral representation with the kernel (Hε − z)−1(s, u, s ′, u′)
for every z ∈ ρ(Hε) with Im

√
z > 0, where ρ(Hε) is the resolvent set of Hε, cf theorem II.37

in [Si71]. Using it we define the projection of the resolvent on the normal modes eigenspaces
as

R
ε

n,m(k2, s, s ′) :=
∫ d

−d

du du′φn(u)(Hε − k2 − Eε,m)−1(s, u, s ′, u′)φm(u′).

The operators R
ε

n,m(k2) : L2(R) → Ran
[
R

ε

n,m(k2)
] ⊂ L2(R) introduced in this way are

bounded operator-valued analytic functions of k2 for all k2 ∈ C\R and Im k > 0.
Next we have to recall some facts about one-dimensional Schrödinger operators. We say

that the Hamiltonian

H = − d2

ds2
+ V (s) (2.3)

has a zero energy resonance if there exists a function ψr ∈ L∞(R), ψr /∈ L2(R), such that
Hψr = 0 holds in the sense of distributions. In particular, if∫

R

V (s)ds �= 0 and ea|·|V ∈ L1(R) (2.4)

holds for some a > 0, then exactly one of the following situations can occur [BGW85]:

Case I. The Hamiltonian H does not have a zero energy resonance.

Case II. The Hamiltonian H has a zero energy resonance; in such a case the function ψr can
be chosen real and two real constants can be defined,

c1 =
[ ∫

R

V (s)ds

]−1 ∫
R

∫
R

V (s)
|s − s ′|

2
V (s ′)ψr(s

′) ds ds ′,
(2.5)

c2 = −1

2

∫
R

sV (s)ψr(s) ds,

and moreover, c1 and c2 cannot vanish simultaneously. Let us stress that the constants c1 and
c2 defined in (2.5) coincide with those employed in [ACF07].

Let us next introduce a pair of Hamiltonians on G both acting as f 	→ −f ′′ but differing

by the boundary conditions in the vertex. The first is the Dirichlet-decoupled operator H
d

with

the domain D(H
d
) := {f ∈ H 2(R \ 0) ∩ H 1(R)|f (0) = 0}. The other is a point-interaction

Hamiltonian H
r
, which again acts as H

r
f = −f ′′ but on the domain

D(H
r
) :=

{
f ∈ H 2(R \ 0)|(c1 + c2)f (0+) = (c1 − c2)f (0−),

(c1 − c2)f
′(0+) = (c1 + c2)f

′(0−) +
λ̂

c1 + c2
f (0−)

}
for c2 �= −c1;

D(H
r
) :=

{
f ∈ H 2(R \ 0)|f (0−) = 0, f ′(0+) = λ̂

4c2
1

f (0+)

}
for c2 = −c1,

where we put

λ̂ := λ1

∫
R

V (s)
(
ψr(s)

)2
ds. (2.6)

The graph G identifies naturally with a line and both H
d

and H
r

belong to the family
of self-adjoint extensions of the symmetric operator L0f := −f ′′ with the domain
D(L0) := C∞

0 (R\{0}) [ABD95].
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Let us say a few more words on the family H
r

which obviously depends on two real
parameters. It is a straightforward exercise to check that the boundary conditions appearing in
the definition of D(H

r
) can be rewritten in the form ((1.1)) with � := (f (0+), f (0−))T ,� ′ :=

(f ′(0+),−f ′(0−))T and the 2 × 2 unitary matrix

U := 1

2
(
c2

1 + c2
2

)
+ iλ̂

(
−4c1c2 − iλ̂ 2

(
c2

1 − c2
2

)
2(c2

1 − c2
2) 4c1c2 − iλ̂

)
. (2.7)

In particular, for λ1 = 0 the boundary conditions define the ‘scale-invariant’ Hamiltonian
obtained in [ACF07]. Applications of this point interaction were discussed recently in [HC06],
and it is worth mentioning that it appears also in the theory of regular tree graphs [So04].
On the other hand, in distinction to [ACF07] we have here a wider class which contains,
in particular, the standard δ interaction of coupling strength λ̂ [AGHH05] corresponding to
c1 = 1 and c2 = 0. Spectral and scattering properties of H

r
are well known [EG99] and we

recall them only briefly:

Proposition 2. For any −∞ < λ̂ � ∞, the essential spectrum of H
r

is absolutely continuous
and coincides with the interval [0,∞). Furthermore, for λ̂ > 0 there are no eigenvalues,
while for λ̂ < 0 there is just one negative eigenvalue given by k2 = k2

0 = − 1
4 λ̂2

(
c2

1 + c2
2

)−1

and the corresponding normalized eigenfunction is

ψ0 =
√

|λ̂|
2

1

c2
1 + c2

2

{
(c1 − c2) eik0s s > 0

(c1 + c2) e−ik0s s < 0

}
, k0 = i|λ̂|

2
(
c2

1 + c2
2

) , λ̂ < 0.

Finally, for λ̂ = 0 the operator H
r

has a zero energy resonance. The on-shell scattering

matrix at energy k2, k � 0, is given by S (k) = [T l (k) Rr (k)

Rl (k) T r (k)

]
with the amplitudes

T {l,r}(k) = 2k
(
c2

1 − c2
2

)
2k

(
c2

1 + c2
2

)
+ iλ̂

, R{l,r}(k) = ± 4kc1c2 ∓ iλ̂

2k
(
c2

1 + c2
2

)
+ iλ̂

.

Let now Gk be the resolvent of the free Laplacian on R, it is a bounded operator-valued
analytical function of k2 for k2 ∈ C\R

+ and Im k > 0, with the integral kernel given by

Gk(s − s ′) = i

2k
eik|s−s ′ | k2 ∈ C\R

+, Im k > 0.

By Krein’s formula [ABD95, EG99] the integral kernel of the resolvent R
d
(k2) := (H

d−k2)−1

is

R
d
(k2, s, s ′) = Gk(s − s ′) + 2ikGk(s)Gk(s

′), k2 ∈ C\R
+, Im k > 0,

while the integral kernel of the resolvent R
r
(k2) := (H

r − k2)−1 equals

R
r
(k2; s, s ′) = Gk(s − s ′) + 2ik

2kc2
2 + iλ̂

2k
(
c2

1 + c2
2

)
+ iλ̂

Gk(s)Gk(s
′) +

4ic2
2

2k
(
c2

1 + c2
2

)
+ iλ̂

G′
k(s)G

′
k(s

′)

+
4kc1c2

2k
(
c2

1 + c2
2

)
+ iλ̂

[Gk(s)G
′
k(s

′) + G′
k(s)Gk(s

′)], k2 ∈ ρ(H
r
), Im k > 0.

Our main result can be now stated as follows:

Theorem 2.1. Suppose that for every 0 < ε � ε0 the curve Cε has no self-intersections, γ is
piecewise C2 with a compact support and γ ′, γ ′′ are bounded. Assuming α > 5/2, we have
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(i) if − d2

ds2 − 1
4γ 2(s) does not have a zero energy resonance, then we have in the uniform (in

other words, operator-norm) limit

u − lim
ε→0

R
ε

n,m(k2) = δn,mR
d
(k2) k2 ∈ C\R, Im k > 0;

(ii) if, on the other hand, − d2

ds2 − 1
4γ 2(s) has a zero energy resonance, then

u − lim
ε→0

R
ε

n,m(k2) = δn,mR
r
(k2) k2 ∈ C\R, Im k > 0,

where the constants c1, c2 and λ̂, defined in (2.5) and (2.6), are obtained by setting
V = − 1

4γ 2 and δn,m indicates the Kronecker symbol, δn,m = 0, if n �= m and δn,n = 1.

3. The limit of short-range potentials in dimension one

The main ingredient in the proof of theorem 2.1 is the analysis of scaling properties of
one-dimensional Hamiltonians. Specifically, we will find the limiting behaviour as ε → 0 for

Hε := − d2

ds2
+

λ(ε)

ε2
V

( s

ε

)
, s ∈ R.

Recall that this problem is well studied if the limit is considered, roughly speaking, around the
free operator [AGHH05]. The case which involves threshold resonances is different and in a
sense similar to approximations of point interactions in dimensions two and three mentioned
above. It is useful to discuss this issue separately because in our opinion it is of independent
interest as approximation of a class of point perturbations of the Laplacian in dimension one
with scaled potentials. Let us stress that the δ′-type interactions do not belong to this class—a
way to approximate them by regular potentials can be found in [ENZ01]. The main idea of
our analysis comes from the work [BGW85].

In the following we suppose that the conditions (2.4) are satisfied. As λ(ε) is real analytic
near the origin by assumption we can make the expansion ((2.2)) for small ε more specific
writing

λ(ε) = 1 +
∞∑

n=1

λnε
n. (3.1)

For every ε > 0, the resolvent of Hε is a bounded operator-valued analytic function of k2 as
long as k2 ∈ C\R

+, k2 /∈ σp(Hε) and Im k > 0, where σp(Hε) denotes the point spectrum of
Hε. As usual we factorize the interaction using the functions

v(s) := |V (s)|1/2, u(s) := sgn[V (s)]|V (s)|1/2,

which allows us to write (Hε − k2)−1 as in [AGHH05], namely

(Hε − k2)−1 = Gk − λ(ε)

ε
Aε(k)Tε(k)Cε(k), (3.2)

where

Tε(k) = [
1 + λ(ε)uGεkv

]−1
Im k � 0, k �= 0, k2 /∈ σp(Hε)

and Aε(k), Cε(k) are defined via their integral kernels, Aε(k; s, s ′) = Gk(s − εs ′)v(s ′) and
Cε(k; s, s ′) = u(s)Gk(εs − s ′), respectively. We are interested in the behaviour of Tε(k) as
ε → 0. To this aim we define the operators P and Q by

P := 1

(v, u)
(v, ·)u, Q := 1 − P
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where (·, ·) denotes the standard scalar product in L2(R); let us note that by assumption we
have (v, u) = ∫

R
V (s) ds �= 0. The operator Tε(k) can be written as in [BGW85],

Tε(k) =
[

1 +
i(v, u)

2εk
P + M̃ε(k)

]−1

(3.3)

where M̃ε(k) ∈ B(L2, L2), the Banach space of bounded operators from L2(R) to L2(R), for
every ε > 0 and Im k > 0. Furthermore, if ea|·|V ∈ L1(R) holds for some a > 0 then M̃ε is
analytic with respect to ε for ε > −a/(2Im k) and the following series expansion converges
in the B(L2, L2)-norm,

M̃ε(k) =
∞∑

n=0

εnm̃n(k),

where

m̃n(k) := (ik)nmn +
iλn+1(v, u)

2k
P +

n∑
j=0

λn−j (ik)jmj n = 0, 1, 2, . . . .

The operators mn are Hilbert–Schmidt and do not depend on k, their integral kernels being
given by the expressions

mn(s, s
′) = −u(s)

|s − s ′|n+1

2(n + 1)!
v(s ′).

The behaviour of Tε(k) as ε → 0 depends strongly on the presence of a zero energy resonance
for the Hamiltonian H . Under the assumptions (2.4), the presence of such a resonance is
equivalent to the existence of a function ϕ0 ∈ L2(R) which satisfies the relation

ϕ0 + QM0Qϕ0 = 0. (3.4)

Furthermore, if such a ϕ0 exists, it can be chosen real, in which case the constants c1, c2 and
λ̂ defined in (2.5) and (2.6), respectively, are related to ϕ0 by

c1 = (v,m0ϕ0)

(v, u)
, c2 = 1

2
((·)v, ϕ0), λ̂ = λ1(ϕ̃0, ϕ0).

with ϕ̃0(s) := sgn[V (s)]ϕ0, and u(s)ψr(s) = −ϕ0(s) holds a.e., cf lemma 2.2 in [BGW85].
Let us introduce the operator

P0 :=


0 in the case I

(ϕ̃0, ·)ϕ0

(ϕ̃0, ϕ0)
in the case II

and the complementary projection Q0 := 1 − P0. From lemma 3.1 in [BGW85] we infer that
for ε ∈ C\{0} small enough the following norm convergent series expansion holds:

[1 + Qm0Q + ε]−1 = P0

ε
+

∞∑
n=0

(−ε)nT n+1
red ,

where Tred = u − limε→0[1 + Qm0Q + ε]−1Q0 is the reduced resolvent. The following claim
is a generalization of theorem 3.1 in [BGW85].

Lemma 1. Suppose that V satisfies the conditions (2.4) and take λ(ε) real analytic near
the origin and with the series expansion (3.1). Assume that k2 /∈ σp(Hε), Im k > 0, and,
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additionally, that in the case II k �= −iλ̂
/(

2
(
c2

1 +c2
2

))
. Then for all ε small enough the operator

Tε(k) has the following norm-convergent series expansions:

Tε(k) =
∞∑

n=p

εntn(k), (3.5)

where p = 0 in the case I and p = 1 in the case II. Moreover, we have

(i) in the case I

(v, t0u) = 0; (
(·)v, t0u

) = (
v, t0(·)u

) = 0; (3.6)

(v, t1u) = −2ik; (3.7)

(ii) in the case II

t−1u = t∗−1v = 0; ((·)v, t−1(·)u) = − 4ic2
2

2k
(
c2

1 + c2
2

)
+ iλ̂

; (3.8)

(v, t0u) = 0; ((·)v, t0u) = (v, t0(·)u) = 4kc1c2

2k
(
c2

1 + c2
2

)
+ iλ̂

; (3.9)

(v, t1u) = −2ik
2kc2

2 + iλ̂

2k
(
c2

1 + c2
2

)
+ iλ̂

. (3.10)

Proof. We prove the lemma first in the case II. Let us assume that equation (3.4) is solved by
ϕ0 ∈ L2(R). By using the relation [BGW85]

1 +
i(v, u)

2εk
P =

[
Q +

2εk

2εk + i(v, u)
P

]−1

in formula (3.3) we obtain

Tε =
[

1 + QM̃ε +
2εk

2εk + i(v, u)
P M̃ε

]−1[
Q +

2εk

2εk + i(v, u)
P

]
. (3.11)

Since Qm̃0 = Qm0, the following norm convergent series expansion holds [BGW85]:(
1 + Qm̃0 + δ

)−1 =
[
P0

δ
+

∞∑
n=0

(−δ)nT n+1
red

][
1 − Qm0P

1 + δ

]
. (3.12)

Taking into account that P0 −P0Qm0P = −P0m0 and performing a simple manipulation, we
can set δ = −2iεk/(v, u) and use relation (3.12) in formula (3.11) to obtain

Tε =
[

1 +

(
(v, u)

2iεk
P0m0 + Dε

)(
2iεk

(v, u)
+ QM̃(1)

ε +
2εk

2εk + i(v, u)
P M̃ε

)]−1

×
[
(v, u)

2iεk
P0m0 + Dε

][
Q +

2εk

2εk + i(v, u)
P

]
,

where

Dε(k) := 2εk

2εk + i(v, u)
P0Qm0P +

∞∑
n=0

(
2iεk

(v, u)

)n

T n+1
red

[
1 − Qm0P

1 − 2iεk/(v, u)

]
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and M̃
(j)
ε (k) = ∑∞

n=j εnm̃n(k) with j = 1, 2, . . . . After some computation we arrive at the
following formula for the operator Tε,

Tε = [1 + P0B̃ + Eε]−1

[
(v, u)

2iεk
P0m0 + Dε

][
Q +

2εk

2εk + i(v, u)
P

]
, (3.13)

where

B̃(k) = m0 +
(v, u)

2ik
m0Qm̃1(k) − m0Pm̃0(k)

and

Eε(k) = (v, u)

2iεk
P0m0QM̃(2)

ε (k) +
2εk

2εk + i(v, u)
P0m0Pm̃0(k) − i(v, u)

2εk + i(v, u)
P0m0PM̃(1)

ε (k)

+ Dε(k)

(
2iεk

(v, u)
+ QM̃(1)

ε (k) +
2εk

2εk + i(v, u)
P M̃ε(k)

)
.

The operator B̃(k) does not depend on ε while Dε(k) and Eε(k) have with respect to the
parameter the following norm convergent series expansions:

Dε(k) =
∞∑

n=0

εndn(k), Eε(k) =
∞∑

n=1

εnen(k). (3.14)

Let us note that
(ϕ̃0, B̃ϕ0)

(ϕ̃0, ϕ0)
= −1 − (v, u)

(ϕ̃0, ϕ0)

(
c2

1 + c2
2 + iλ̂

/
(2k)

)
and P0B̃P0 = (ϕ̃0, B̃ϕ0)/(ϕ̃0, ϕ0)P0. In a similar way as in [BGW85] we can explicitly
evaluate for k �= −iλ̂

/(
2
(
c2

1 + c2
2

))
the inverse of 1 + P0B̃ obtaining

[1 + P0B̃]−1 = 1 +
(ϕ̃0, ϕ0)

(v, u)

1

c2
1 + c2

2 + iλ̂/(2k)
P0B̃.

Formula (3.13) implies that in the case II the norm convergent series expansion (3.5) holds for
ε small enough with p = −1.

Keeping only the corresponding terms of order ε−1 on the right-hand side of
equation (3.13) and using the relation P0m0Q = −P0 we obtain

t−1 = (v, u)

2ik
[1 + P0B̃]−1P0m0Q = (ϕ̃0, ϕ0)

2ik

1(
c2

1 + c2
2 + iλ̂

/
(2k)

)P0.

Relations (3.8) follow from P0u = P ∗
0 v = 0 and ((·)v, P0(·)u) = 4c2

2

/
(ϕ̃0, ϕ0). Inspecting

the terms of order zero in ε on the right-hand side of (3.13) we obtain

t0 = [1 + P0B̃]−1[−P0m0P + d0Q − e1t−1].

The relation (v, t0u) = 0 is a consequence of the fact that ([1 + P0B̃]−1)∗v = v. Moreover,
by a direct calculation based on the relation TredP = PTred = P similar to [BGW85] one can
check that

((·)v, t0u) = −((·)v, [1 + P0B̃]−1P0m0u)

and

(v, t0(·)u) = −(v, e1t−1(·)u)

from which relations (3.9) follow. Formula (3.10) is obtained by considering the terms of
order ε on the right-hand side of equation (3.13) in combination with the relation

(v, t1u) = − 2ik

(v, u)
(v, d0u) − (v, e1[1 + P0B̃]−1P0m0u).
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It remains to deal with the case I. Then P0 = 0 and equation (3.13) becomes

Tε = [1 + Eε]−1Dε

[
Q +

2εk

2εk + i(v, u)
P

]
, (3.15)

where

Dε(k) =
∞∑

n=0

(
2iεk

(v, u)

)n

T n+1
red

[
1 − Qm0P

1 − 2iεk/(v, u)

]
and

Eε(k) = Dε(k)

(
2iεk

(v, u)
+ QM̃(1)

ε (k) +
2εk

2εk + i(v, u)
P M̃ε(k)

)
.

The series expansions (3.14) still hold, and the norm convergent series expansion (3.5) in the
case I is valid with p = 0. Let us note that [1 + Eε] is invertible for ε � 0 with ε small enough
and, consequently, it is not necessary to assume k �= −iλ̂

/(
2
(
c2

1 + c2
2

))
. In the case I we thus

have

t0 = d0Q = Tred[1 − Qm0P ]Q,

from which it easily follows that (v, t0u) = 0, and from PTred = TredP = P one gets relations
(3.6). The terms of order ε on the right-hand side of equation (3.15) give

t1 = 2k

i(v, u)
d0P + d1Q − e1d0Q,

formula (3.7) then follows from (v, d0u) = (v, u). �

With this result at hand we can follow the argument line of [ACF07] to establish the

norm-resolvent convergence of the Hamiltonian Hε to H
d

or H
r
, depending on the potential

V ; we omit the details. Using formulae (3.6)–(3.10) in the proof of lemma 1 of [ACF07] we
arrive at the following conclusion:

Theorem 3.1. Suppose that V satisfies the conditions (2.4) and λ(ε) is real analytic near the
origin having the series expansion (3.1). Then we have

(i) in the case I

u − lim
ε→0

(Hε − k2)−1 = R
d
(k2) k2 ∈ C\R, Im k > 0;

(ii) in the case II

u − lim
ε→0

(Hε − k2)−1 = R
r
(k2) k2 ∈ C\R, Im k > 0.

4. Proof of theorem 2.1

Also the rest of the proof of the main result now follows closely [ACF07] so it is sufficient to
sketch the argument. It splits into two steps. The first was dealt with in the previous section,
the second step consists of the proof of the claim given below. Since the latter is essentially
as lemma 3 in [ACF07], we just state it omitting the details.

Lemma 4.1. Suppose that Cε has no self-intersections for every 0 < ε � ε0 and, moreover,
that γ is piecewise C2, has compact support and γ ′, γ ′′ are bounded. Fix an α > 5/2 and
define H

γ
ε as the closure of the e.s.a. operator

H
γ

0ε := − ∂2

∂s2
− 1

ε2α

∂2

∂u2
− λ(ε)

ε2

γ (s/ε)2

4
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with the domain

D
(
H

γ

0ε

)
:= {ψ ∈ L2(�′)|ψ ∈ C∞(�′), ψ(s, d) = ψ(s,−d) = 0,H

γ

0εψ ∈ L2(�′)}.
Defining the matrix elements R

γ,ε
n,m with respect to the transverse modes φn and φm,

Rγ,ε
n,m(k2; s, s ′) =

∫ d

−d

du du′φn(u)
(
Hγ

ε − k2 − Eε,m

)−1
(s, u, s ′, u′)φm(u′),

we have

u − lim
ε→0

(
Rε

n,m(k2) − Rγ,ε
n,m(k2)

) = 0 k2 ∈ C\R, Im k > 0.

In analogy with [ACF07], theorem 2.1 is now obtained by combination of theorem 3.1
and lemma 4.1.
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Note added in proof. At the same time as this paper was posted as a preprint, an extension of [MV06] was posted,
0704.2795v1 [Math-ph], showing that the ‘Kirchhoff’ conditions can be obtained in the case of a threshold resonance.
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